IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v4y2025ip895id1056294dm2025895.html
   My bibliography  Save this article

Predicting Blood Type: Assessing Model Performance with ROC Analysis

Author

Listed:
  • Malik A. Altayar
  • Muhyeeddin Alqaraleh
  • Mowafaq Salem Alzboon
  • Wesam T. Almagharbeh

Abstract

Introduction: Personal identification is a critical aspect of forensic sciences, security, and healthcare. While conventional biometrics systems such as DNA profiling and iris scanning offer high accuracy, they are time-consuming and costly. Objectives: This study investigates the relationship between fingerprint patterns and ABO blood group classification to explore potential correlations between these two traits. Methods: The study analyzed 200 individuals, categorizing their fingerprints into three types: loops, whorls, and arches. Blood group classification was also recorded. Statistical analysis, including chi-square and Pearson correlation tests, was used to assess associations between fingerprint patterns and blood groups. Results: Loops were the most common fingerprint pattern, while blood group O+ was the most prevalent among the participants. Statistical analysis revealed no significant correlation between fingerprint patterns and blood groups (p > 0.05), suggesting that these traits are independent. Conclusions: Although the study showed limited correlation between fingerprint patterns and ABO blood groups, it highlights the importance of future research using larger and more diverse populations, incorporating machine learning approaches, and integrating multiple biometric signals. This study contributes to forensic science by emphasizing the need for rigorous protocols and comprehensive investigations in personal identification.

Suggested Citation

Handle: RePEc:dbk:datame:v:4:y:2025:i::p:895:id:1056294dm2025895
DOI: 10.56294/dm2025895
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:4:y:2025:i::p:895:id:1056294dm2025895. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.