IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v3y2024ip359id1056294dm2024359.html
   My bibliography  Save this article

Machine Learning-Based System for Automated Presentation Generation from CSV Data

Author

Listed:
  • Balusamy Nachiappan
  • N Rajkumar
  • C Kalpana
  • A Mohanraj
  • B Prabhu Shankar
  • C Viji

Abstract

Effective presentation slides are crucial for conveying information efficiently, yet existing tools lack content analysis capabilities. This paper introduces a content-based PowerPoint presentation generator, aiming to address this gap. By leveraging automated techniques, slides are generated from text documents, ensuring original concepts are effectively communicated. Unstructured data poses challenges for organizations, impacting productivity and profitability. While traditional methods fall short, AI-based approaches offer promise. This systematic literature review (SLR) explores AI methods for extracting data from unstructured details. Findings reveal limitations in existing methods, particularly in handling complex document layouts. Moreover, publicly available datasets are task-specific and of low quality, highlighting the need for comprehensive datasets reflecting real-world scenarios. The SLR underscores the potential of Artificial-based approaches for information extraction but emphasizes the challenges in processing diverse document layouts. The proposed is a framework for constructing high-quality datasets and advocating for closer collaboration between businesses and researchers to address unstructured data challenges effectively

Suggested Citation

Handle: RePEc:dbk:datame:v:3:y:2024:i::p:359:id:1056294dm2024359
DOI: 10.56294/dm2024359
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:359:id:1056294dm2024359. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.