IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v3y2024ip277id1056294dm2024277.html
   My bibliography  Save this article

Intelligent Optimization Framework for Future Communication Networks using Machine Learning

Author

Listed:
  • Vijaya Saradhi Thommandru
  • T. Suma
  • Mary Odilya Teena
  • Muthukrishnan
  • P Thamaraikannan
  • S. Manikandan

Abstract

Confronting the undeniably complicated versatile correspondence organization, knowledge is the advancement heading of organization versatile improvement innovation later on. Portable correspondence information is a significant part representing things to come data society. AI calculation is embraced in the versatile improvement plot, which can facilitate different enhancement goals as per the progressions of climate and state and understand the ideal boundary arrangement. Canny portable terminal hardware is turning out to be increasingly well known. The combination and advancement of social, portable and area administrations make the conventional informal organization easily change to versatile correspondence organization. AI is a part of man-made consciousness. Its examination objective is to construct a framework which can advance a few guidelines from information and apply them to the resulting information handling. In light of chart hypothesis, this paper tackles the issue of correspondence network information really, and concentrates on the calculation of huge information examination in view of AI

Suggested Citation

Handle: RePEc:dbk:datame:v:3:y:2024:i::p:277:id:1056294dm2024277
DOI: 10.56294/dm2024277
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:277:id:1056294dm2024277. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.