IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v3y2024ip262id1056294dm2024262.html
   My bibliography  Save this article

Hybrid Feature Selection with Chaotic Rat Swarm Optimization-Based Convolutional Neural

Author

Listed:
  • D Sasirega
  • V. Krishnapriya

Abstract

Introduction: Early diagnosis of Cardiovascular Disease (CVD) is vital in reducing mortality rates. Artificial intelligence and machine learning algorithms have increased the CVD prediction capability of clinical decision support systems. However, the shallow feature learning in machine learning and incompetent feature selection methods still pose a greater challenge. Consequently, deep learning algorithms are needed to improvise the CVD prediction frameworks. Methods: This paper proposes an advanced CDSS for CVD detection using a hybrid DL method. Initially, the Improved Hierarchical Density-based Spatial Clustering of Applications with Noise (IHDBSCAN), Adaptive Class Median-based Missing Value Imputation (ACMMVI) and Clustering Using Representatives-Adaptive Synthetic Sampling (CURE-ADASYN) approaches are introduced in the pre-processing stage for enhancing the input quality by solving the problems of outliers, missing values and class imbalance, respectively. Then, the features are extracted, and optimal feature subsets are selected using the hybrid model of Information gain with Improved Owl Optimization algorithm (IG-IOOA), where OOA is improved by enhancing the search functions of the local search process. These selected features are fed to the proposed Chaotic Rat Swarm Optimization-based Convolutional Neural Networks (CRSO-CNN) classifier model for detecting heart disease. Results: Four UCI datasets are used to validate the proposed framework, and the results showed that the OOA-DLSO-ELM-based approach provides better heart disease prediction with high accuracy of 97,57 %, 97,32 %, 96,254 % and 97,37 % for the four datasets. Conclusions: Therefore, this proposed CRSO-CNN model improves the heart disease classification with reduced time complexity for all four UCI datasets

Suggested Citation

Handle: RePEc:dbk:datame:v:3:y:2024:i::p:262:id:1056294dm2024262
DOI: 10.56294/dm2024262
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:262:id:1056294dm2024262. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.