IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v3y2024ip.417id1056294dm2024417.html
   My bibliography  Save this article

AI in the Sky: Developing Real-Time UAV Recognition Systems to Enhance Military Security

Author

Listed:
  • Salem Alzboon Mowafaq
  • Alqaraleh Muhyeeddin
  • Mohammad Subhi Al-Batah

Abstract

In an era where Unmanned Aerial Vehicles (UAVs) have become crucial in military surveillance and operations, the need for real-time and accurate UAV recognition is increasingly critical. The widespread use of UAVs presents various security threats, requiring systems that can differentiate between UAVs and benign objects, such as birds. This study conducts a comparative analysis of advanced machine learning models to address the challenge of aerial classification in diverse environmental conditions without system redesign. Large datasets were used to train and validate models, including Neural Networks, Support Vector Machines, ensemble methods, and Random Forest Gradient Boosting Machines. These models were evaluated based on accuracy and computational efficiency, key factors for real-time application. The results indicate that Neural Networks provide the best performance, demonstrating high accuracy in distinguishing UAVs from birds. The findings emphasize that Neural Networks have significant potential to enhance operational security and improve the allocation of defense resources. Overall, this research highlights the effectiveness of machine learning in real-time UAV recognition and advocates for the integration of Neural Networks into military defense systems to strengthen decision-making and security operations. Regular updates to these models are recommended to keep pace with advancements in UAV technology, including more agile and stealthier designs

Suggested Citation

Handle: RePEc:dbk:datame:v:3:y:2024:i::p:.417:id:1056294dm2024417
DOI: 10.56294/dm2024.417
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:.417:id:1056294dm2024417. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.