Author
Listed:
- Ariss Anass
- Ennejjai Imane
- Jamal Mabrouki
- Soumia Ziti
Abstract
This study extends the formulation of a tracking system for both live items and living persons, and gives a thorough theoretical framework for an advanced tracking system. A large number of tracking systems in use today were created inside certain frameworks and designed to monitor in either infinite or restricted spatial contexts. The latter typically makes use of specialized technological instruments designed with tracking objects or living things in mind. Our contribution to this topic is the formulation of a system theory that both formulates and innovates the challenge of monitoring objects and living things. Graphical modeling is widely used in tracking, which is interesting because it makes it easier to create precise relationships between the objects that need to be tracked and other parts of the system. But our study argues that the best way to achieve a high-performing, contextually relevant, and flexible system in a range of scenarios is still to build a tracking system around graphs, both theoretically and practically. We provide a unique tracking method to further the discipline, based on the ideas of hypergraphs and graph learning. This method carefully examines the order between various linkages inside the system, allowing the system to fully use both direct and indirect relations. The way we formulate tracking is as a complex search problem on graphs and hypergraphs. In this case, the system's components—living things or objects—are represented by vertices, and the kinds of relationships that exist between them are indicated by edges. We present a governing law that facilitates different processing tasks, manages shared data across system parts, and defines the connections between vertices. Additionally, we provide illustrated examples covering single and multi-context tracking scenarios to support our work. These illustrations highlight how, in comparison to current tracking technologies, the suggested approach performs better theoretically. In addition to adding to the theoretical conversation, this discovery has potential applicability in a variety of tracking contexts
Suggested Citation
Handle:
RePEc:dbk:datame:v:3:y:2024:i::p:.406:id:1056294dm2024406
DOI: 10.56294/dm2024.406
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:.406:id:1056294dm2024406. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.