Author
Listed:
- Meshal Alharbi
- Ahmad Sultan
Abstract
Introduction: Image classification stands as a pivotal undertaking within the domain of computer vision technology. Primarily, this task entails the processes of image augmentation and segmentation, which are executed by various neural network architectures, including multi-layer neural networks, artificial neural networks, and perceptron networks. These image classifiers employ distinct hyperparameters for the prediction and identification of objects. Nevertheless, these neural networks exhibit susceptibility to issues such as overfitting and a lack of interpretability when confronted with low-quality images. Objective: These limitations can be mitigated through the adoption of Quantum Computing (QC) methodologies, which offer advantages such as rapid execution speed, inherent parallelism, and superior resource utilization. Method: This approach aims to ameliorate the challenges posed by conventional Machine Learning (ML) methods. Convolutional Neural Networks (CNNs) are instrumental in reducing the number of parameters while preserving the quality of dataset images. They also possess the capability to automatically discern salient features and maintain robustness in noisy environments. Consequently, a novel approach known as Deep Revamped Quantum CNN (DRQCNN) has been developed and implemented for the purpose of categorizing images contained within the Fashion MNIST dataset, with a particular emphasis on achieving heightened accuracy rates. Results: In order to assess its efficacy, this proposed method is systematically compared with the traditional Artificial Neural Network (ANN). DRQCNN leverages quantum circuits as convolutional filters with a weight adjustment mechanism for multi-dimensional vectors. Conclusions: This innovative approach is designed to enhance image classification accuracy and overall system effectiveness. The efficacy of the proposed system is evaluated through the analysis of key performance metrics, including F1-score, precision, accuracy, and recall
Suggested Citation
Handle:
RePEc:dbk:datame:v:3:y:2024:i::p:.358:id:1056294dm2024358
DOI: 10.56294/dm2024.358
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:.358:id:1056294dm2024358. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.