Author
Listed:
- Salma Benchikh
- Jarou Tarik
- Mohamed khalifa Boutahir
- Elmehdi Nasri
- roa Lamrani
Abstract
Photovoltaic systems play a pivotal role in renewable energy initiatives. To enhance the efficiency of solar panels amid changing environmental conditions, effective Maximum Power Point Tracking (MPPT) is essential. This study introduces an innovative control approach based on an Artificial Neural Network (ANN) controller tailored for photovoltaic systems. The aim is to elevate the precision and adaptability of MPPT, thereby improving solar energy harvesting. This research integrated an ANN controller into a photovoltaic system in order dynamically optimize the operating point of solar panels in response to environmental changes. The performance of the ANN controller was compared with traditional MPPT approaches using simulation in Simulink/Matlab. The results of the simulation showed that the ANN controller performed better than the traditional MPPT techniques, highlighting the effectiveness of this method for dynamically changing solar panel performance. The ANN particularly demonstrates higher precision and adaptability when environmental conditions vary. The strategy consistently achieves and maintains the maximum power point, enhancing overall energy harvesting efficiency. The integration of an ANN controller marks a significant advance in solar energy control. The study highlights the superiority of the ANN controller through rigorous simulations, demonstrating increased accuracy and adaptability. This approach not only proves effective, but also has the potential to outperform other MPPT strategies in terms of stability and responsiveness
Suggested Citation
Salma Benchikh & Jarou Tarik & Mohamed khalifa Boutahir & Elmehdi Nasri & roa Lamrani, 2023.
"Improving Photovoltaic System Performance with Artificial Neural Network Control,"
Data and Metadata, AG Editor, vol. 2, pages 144-144.
Handle:
RePEc:dbk:datame:v:2:y:2023:i::p:144:id:1056294dm2023144
DOI: 10.56294/dm2023144
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:144:id:1056294dm2023144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.