Author
Abstract
In the realm of Industry 4.0, the utilization of artificial intelligence (AI) and machine learning for anomaly detection faces challenges due to significant computational demands and associated environmental consequences. This study aims to tackle the need for high-performance machine learning models while promoting environmental sustainability, contributing to the emerging concept of 'Green AI.' We meticulously assessed a wide range of machine learning algorithms, combined with various Multilayer Perceptron (MLP) configurations. Our evaluation encompassed a comprehensive set of performance metrics, including Accuracy, Area Under the Curve (AUC), Recall, Precision, F1 Score, Kappa Statistic, Matthews Correlation Coefficient (MCC), and F1 Macro. Concurrently, we evaluated the environmental footprint of these models by considering factors such as time duration, CO2 emissions, and energy consumption during training, cross-validation, and inference phases. While traditional machine learning algorithms like Decision Trees and Random Forests exhibited robust efficiency and performance, optimized MLP configurations yielded superior results, albeit with a proportional increase in resource consumption. To address the trade-offs between model performance and environmental impact, we employed a multi-objective optimization approach based on Pareto optimality principles. The insights gleaned emphasize the importance of striking a balance between model performance, complexity, and environmental considerations, offering valuable guidance for future endeavors in developing environmentally conscious machine learning models for industrial applications.
Suggested Citation
Jaydeep Thakker, 2024.
"Security Challenges of Vehicular Cloud Computing,"
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 2(1), pages 197-206.
Handle:
RePEc:das:njaigs:v:2:y:2024:i:1:p:197-206:id:106
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:das:njaigs:v:2:y:2024:i:1:p:197-206:id:106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Open Knowledge (email available below). General contact details of provider: https://newjaigs.com/index.php/JAIGS/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.