IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v12y2004i04p375-385_00.html
   My bibliography  Save this article

Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls

Author

Listed:
  • Park, David K.
  • Gelman, Andrew
  • Bafumi, Joseph

Abstract

We fit a multilevel logistic regression model for the mean of a binary response variable conditional on poststratification cells. This approach combines the modeling approach often used in small-area estimation with the population information used in poststratification (see Gelman and Little 1997, Survey Methodology 23:127–135). To validate the method, we apply it to U.S. preelection polls for 1988 and 1992, poststratified by state, region, and the usual demographic variables. We evaluate the model by comparing it to state-level election outcomes. The multilevel model outperforms more commonly used models in political science. We envision the most important usage of this method to be not forecasting elections but estimating public opinion on a variety of issues at the state level.

Suggested Citation

  • Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
  • Handle: RePEc:cup:polals:v:12:y:2004:i:04:p:375-385_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700000905/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:12:y:2004:i:04:p:375-385_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.