IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v23y2019is1p25-58_00.html
   My bibliography  Save this article

Endogenizing The Ict Sector: A Multisector Approach

Author

Listed:
  • Wymer, Clifford R.
  • Saltari, Enrico
  • Federici, Daniela

Abstract

In this paper, we present a nonlinear model where the information and communication technology (ICT) sector is endogenized. In the model, there are two intermediate goods: a traditional good produced by capital and labor and the ICT good produced by innovative capital and skilled labor. The final good is obtained combining the two intermediate goods. The model is specified and estimated as continuous-time general disequilibrium framework. Our main results are the following. We find that the elasticity of substitution of the aggregate sector has a value intermediate between that of the ICT sector and that of the traditional sector, indicating that the input complementarity is tighter in the former than in the latter. Moreover, in all the sectors elasticities are well below 1. As for the traditional sector, whose share is predominant in the production of the final good, the input complementarity helps explain most of the labor share decline of Italian economy as a consequence of the slowdown in the growth of capital intensity. In the ICT sector, technological progress, both in the form of capital augmenting and capital bias, showed a decline over the sample period with an obvious negative consequence on the global evolution of the technical progress. The results about the dynamics of the two intermediate sectors allow to interpret the “Italian paradox†of an industrial structure marked by an increasing weight of the traditional sector and the difficulties encountered by the Italian economy in exiting from its actual worst recession since the 1930s.

Suggested Citation

  • Wymer, Clifford R. & Saltari, Enrico & Federici, Daniela, 2019. "Endogenizing The Ict Sector: A Multisector Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(S1), pages 25-58, September.
  • Handle: RePEc:cup:macdyn:v:23:y:2019:i:s1:p:25-58_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100517000384/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Saltari, Enrico & Federici, Daniela, 2014. "Elasticity of substitution and the slowdown of the Italian productivity," MPRA Paper 58422, University Library of Munich, Germany.
    2. Philippe Aghion & Diego Comin & Peter Howitt & Isabel Tecu, 2016. "When Does Domestic Savings Matter for Economic Growth?," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(3), pages 381-407, August.
    3. Klump, Rainer & McAdam, Peter & Willman, Alpo, 2008. "Unwrapping some euro area growth puzzles: Factor substitution, productivity and unemployment," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 645-666, June.
    4. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    5. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, Oxford University Press, vol. 129(1), pages 61-103.
    6. Gandolfo, Giancarlo & Padoan, Pietro Carlo, 1990. "The Italian continuous time model : Theory and empirical results," Economic Modelling, Elsevier, vol. 7(2), pages 91-132, April.
    7. John G. Fernald, 2015. "Productivity and Potential Output before, during, and after the Great Recession," NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.
    8. Chirinko, Robert S. & Fazzari, Steven M. & Meyer, Andrew P., 1999. "How responsive is business capital formation to its user cost?: An exploration with micro data," Journal of Public Economics, Elsevier, vol. 74(1), pages 53-80, October.
    9. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, September.
    10. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    11. Wymer, C R, 1972. "Econometric Estimation of Stochastic Differential Equation Systems," Econometrica, Econometric Society, vol. 40(3), pages 565-577, May.
    12. Oliver J. Blanchard, 1997. "The Medium Run," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(2), pages 89-158.
    13. Xue, Jianpo & Yip, Chong K., 2013. "Aggregate elasticity of substitution and economic growth: A synthesis," Journal of Macroeconomics, Elsevier, vol. 38(PA), pages 60-75.
    14. Wymer, Clifford R., 1997. "Structural Nonlinear Continuous-Time Models In Econometrics," Macroeconomic Dynamics, Cambridge University Press, vol. 1(2), pages 518-548, June.
    15. Bergstrom,Albert Rex & Nowman,Khalid Ben, 2012. "A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends," Cambridge Books, Cambridge University Press, number 9781107411234.
    16. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," Review of Economic Studies, Oxford University Press, vol. 34(2), pages 201-218.
    17. Saltari Enrico & Wymer Clifford R. & Federici Daniela & Giannetti Marilena, 2012. "Technological Adoption with Imperfect Markets in the Italian Economy," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-30, April.
    18. Michel De Vroey & Pierre Malgrange, 2016. "Macroeconomics," Chapters, in: Gilbert Faccarello & Heinz D. Kurz (ed.), Handbook on the History of Economic Analysis Volume III, chapter 27, pages 372-390, Edward Elgar Publishing.
    19. Turunen, Jarkko & Musso, Alberto & Stocker, Marc & Gómez-Salvador, Ramón, 2006. "Labour productivity developments in the euro area," Occasional Paper Series 53, European Central Bank.
    20. Bergstrom, A. R. & Nowman, K. B. & Wymer, C. R., 1992. "Gaussian estimation of a second order continuous time macroeconometric model of the UK," Economic Modelling, Elsevier, vol. 9(4), pages 313-351, October.
    21. Rainer Klump & Harald Preissler, 2000. "CES Production Functions and Economic Growth," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 41-56, March.
    22. Chris Papageorgiou & Marianne Saam, 2008. "Two‐level CES Production Technology in the Solow and Diamond Growth Models," Scandinavian Journal of Economics, Wiley Blackwell, vol. 110(1), pages 119-143, March.
    23. Turnovsky, Stephen J., 2002. "Intertemporal and intratemporal substitution, and the speed of convergence in the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1765-1785, August.
    24. Wilson, Daniel J., 2009. "IT and Beyond: The Contribution of Heterogeneous Capital to Productivity," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 52-70.
    25. Saltari, Enrico & Wymer, Clifford R. & Federici, Daniela, 2013. "The impact of ICT and business services on the Italian economy," Structural Change and Economic Dynamics, Elsevier, vol. 25(C), pages 110-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federici, Daniela & Saltari, Enrico, 2018. "Elasticity Of Substitution And Technical Progress: Is There A Misspecification Problem?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(1), pages 101-121, January.
    2. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    3. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    4. Saltari Enrico & Wymer Clifford R. & Federici Daniela & Giannetti Marilena, 2012. "Technological Adoption with Imperfect Markets in the Italian Economy," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-30, April.
    5. E. et al. Saltari, 2011. "The impact of ICT on the Italian productivity dynamics," Working Papers 149, University of Rome La Sapienza, Department of Public Economics.
    6. Temple, Jonathan, 2012. "The calibration of CES production functions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 294-303.
    7. Mallick, Debdulal, 2012. "The role of the elasticity of substitution in economic growth: A cross-country investigation," Labour Economics, Elsevier, vol. 19(5), pages 682-694.
    8. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    9. Kieran P. Donaghy, 1998. "Incomes Policies Revisited," Working Papers 46, Sapienza University of Rome, CIDEI.
    10. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    11. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    12. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    13. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    14. Francisco Alvarez-Cuadrado & Ngo Van Long & Markus Poschke, 2016. "Capital-Labor Substitution, Structural Change and Growth," CESifo Working Paper Series 5928, CESifo.
    15. Gerard Ballot & Antoine Mandel & Annick Vignes, 2015. "Agent-based modeling and economic theory: where do we stand?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 199-220, October.
    16. Ezra Oberfield & Devesh Raval, 2012. "Micro data and macro technology," Working Paper Series WP-2012-11, Federal Reserve Bank of Chicago.
    17. Espinoza, Raphael & Ostry, Jonathan D. & Papageorgiou, Chris, 2019. "The Armistice of the Sexes: Gender Complementarities in the Production Function," CEPR Discussion Papers 13792, C.E.P.R. Discussion Papers.
    18. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    19. Richard Green and Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Cantore, C. & Ferroni, F. & León-Ledesma, M A., 2011. "Interpreting the Hours-Technology time-varying relationship," Working papers 351, Banque de France.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:23:y:2019:i:s1:p:25-58_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: https://www.cambridge.org/mdy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.