IDEAS home Printed from https://ideas.repec.org/a/cup/eurrev/v22y2014i01p18-33_00.html
   My bibliography  Save this article

The P versus NP Problem from the Membrane Computing View

Author

Listed:
  • Pérez-Jiménez, Mario J.

Abstract

In the last few decades several computing models using powerful tools from Nature have been developed (because of this, they are known as bio-inspired models). Commonly, the space-time trade-off method is used to develop efficient solutions to computationally hard problems. According to this, implementation of such models (in biological, electronic, or any other substrate) would provide a significant advance in the practical resolution of hard problems. Membrane Computing is a young branch of Natural Computing initiated by Gh. Păun at the end of 1998. It is inspired by the structure and functioning of living cells, as well as from the organization of cells in tissues, organs, and other higher order structures. The devices of this paradigm, called P systems or membrane systems, constitute models for distributed, parallel and non-deterministic computing. In this paper, a computational complexity theory within the framework of Membrane Computing is introduced. Polynomial complexity classes associated with different models of cell-like and tissue-like membrane systems are defined and the most relevant results obtained so far are presented. Different borderlines between efficiency and non-efficiency are shown, and many attractive characterizations of the P ≠NP conjecture within the framework of this bio-inspired and non-conventional computing model are studied.

Suggested Citation

  • Pérez-Jiménez, Mario J., 2014. "The P versus NP Problem from the Membrane Computing View," European Review, Cambridge University Press, vol. 22(1), pages 18-33, February.
  • Handle: RePEc:cup:eurrev:v:22:y:2014:i:01:p:18-33_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1062798713000598/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:eurrev:v:22:y:2014:i:01:p:18-33_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/erw .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.