IDEAS home Printed from https://ideas.repec.org/a/cup/eurrev/v21y2013i02p190-199_00.html
   My bibliography  Save this article

Amino Acids and the Asymmetry of Life

Author

Listed:
  • Meierhenrich, Uwe J.

Abstract

‘How did life start on Earth?’ and ‘Why were left-handed amino acids selected for the architecture of proteins?’ A new attempt to answer these questions of high public and interdisciplinary scientific interest will be provided by this review. It will describe most recent experimental data on how the basic and molecular building blocks of life, amino acids, formed in a prebiotic setting. Most amino acids are chiral, that is that they cannot be superimposed with their mirror image molecules (enantiomers). In processes triggering the origin of life on Earth, the equal occurrence, i.e. the parity between left-handed amino acids and their right-handed mirror images, was violated. In the case of amino acids, the balance was tipped to the left – as a result of which life's proteins today exclusively implement the left-handed form of amino acids, called l-amino acid enantiomers. Neither plants, nor animals, including humans, make use of d-amino acids for the molecular architecture of their proteins (enzymes). This review addresses the molecular asymmetry of amino acids in living organisms, namely the preference for left-handedness. What was the cause for the violation of molecular parity of amino acids in the emergence of life on Earth? All the fascinating models proposed by physicists, chemists, and biologists will be vividly presented including the scientific conflicts. Special emphasis will be given to amino acid enantiomers that were subjected to chiral photons. The interaction between racemic molecules and chiral photons was shown to produce an enantiomeric enrichment that will be discussed in the context of absolute asymmetric synthesis. The concluding paragraphs will describe the attempt to verify any of those models with the chirality-module of the Rosetta mission. This European space mission contains probe Philae that was launched on board the Rosetta spacecraft with the aim of landing on the icy surface of comet 67P/Churyumov-Gerasimenko and analysing whether chiral organic compounds are present that could have been brought to the Earth by comet impacts.

Suggested Citation

  • Meierhenrich, Uwe J., 2013. "Amino Acids and the Asymmetry of Life," European Review, Cambridge University Press, vol. 21(2), pages 190-199, May.
  • Handle: RePEc:cup:eurrev:v:21:y:2013:i:02:p:190-199_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S106279871200035X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:eurrev:v:21:y:2013:i:02:p:190-199_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/erw .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.