IDEAS home Printed from
   My bibliography  Save this article

Robust Model Selection and M-Estimation


  • Machado, José A.F.


This paper studies the qualitative robustness properties of the Schwarz information criterion (SIC) based on objective functions defining M -estimators. A definition of qualitative robustness appropriate for model selection is provided and it is shown that the crucial restriction needed to achieve robustness in model selection is the uniform boundedness of the objective function. In the process, the asymptotic performance of the SIC for general M -estimators is also studied. The paper concludes with a Monte Carlo study of the finite sample behavior of the SIC for different specifications of the sample objective function.

Suggested Citation

  • Machado, José A.F., 1993. "Robust Model Selection and M-Estimation," Econometric Theory, Cambridge University Press, vol. 9(03), pages 478-493, June.
  • Handle: RePEc:cup:etheor:v:9:y:1993:i:03:p:478-493_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    2. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    3. Fritsch, Markus & Haupt, Harry & Ng, Pin T., 2016. "Urban house price surfaces near a World Heritage Site: Modeling conditional price and spatial heterogeneity," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 260-275.
    4. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    5. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
    6. Bera, A. K. & Galvao Jr, A. F. & Montes-Rojas, G. & Park, S. Y., 2010. "Which quantile is the most informative? Maximum likelihood, maximum entropy and quantile regression," Working Papers 10/08, Department of Economics, City University London.
    7. Huiyu Huang & Tae-Hwy Lee, 2013. "Forecasting Value-at-Risk Using High-Frequency Information," Econometrics, MDPI, Open Access Journal, vol. 1(1), pages 1-14, June.
    8. repec:wyi:journl:002126 is not listed on IDEAS
    9. repec:wyi:journl:002094 is not listed on IDEAS
    10. Baierl, Andreas & Futschik, Andreas & Bogdan, Malgorzata & Biecek, Przemyslaw, 2007. "Locating multiple interacting quantitative trait loci using robust model selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6423-6434, August.
    11. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    12. Mao, Guangyu, 2015. "Model selection of M-estimation models using least squares approximation," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 238-243.
    13. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    14. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    15. Mao, Guangyu, 2013. "Model selection for regression with heteroskedastic and autocorrelated errors," Economics Letters, Elsevier, vol. 118(3), pages 497-501.
    16. Bera Anil K. & Galvao Antonio F. & Montes-Rojas Gabriel V. & Park Sung Y., 2016. "Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 79-101, January.
    17. Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
    18. repec:eee:jiaata:v:28:y:2017:i:c:p:10-30 is not listed on IDEAS
    19. Arie Preminger & Shinichi Sakata, 2007. "A model selection method for S-estimation," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 294-319, July.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:9:y:1993:i:03:p:478-493_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.