IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v39y2023i5p900-949_2.html
   My bibliography  Save this article

Limit Theory For Locally Flat Functional Coefficient Regression

Author

Listed:
  • Phillips, Peter C. B.
  • Wang, Ying

Abstract

Functional coefficient (FC) regressions allow for systematic flexibility in the responsiveness of a dependent variable to movements in the regressors, making them attractive in applications where marginal effects may depend on covariates. Such models are commonly estimated by local kernel regression methods. This paper explores situations where responsiveness to covariates is locally flat or fixed. The paper develops new asymptotics that take account of shape characteristics of the function in the locality of the point of estimation. Both stationary and integrated regressor cases are examined. The limit theory of FC kernel regression is shown to depend intimately on functional shape in ways that affect rates of convergence, optimal bandwidth selection, estimation, and inference. In FC cointegrating regression, flat behavior materially changes the limit distribution by introducing the shape characteristics of the function into the limiting distribution through variance as well as centering. In the boundary case where the number of zero derivatives tends to infinity, near parametric rates of convergence apply in stationary and nonstationary cases. Implications for inference are discussed and a feasible pre-test inference procedure is proposed that takes unknown potential flatness into consideration and provides a practical approach to inference.

Suggested Citation

  • Phillips, Peter C. B. & Wang, Ying, 2023. "Limit Theory For Locally Flat Functional Coefficient Regression," Econometric Theory, Cambridge University Press, vol. 39(5), pages 900-949, October.
  • Handle: RePEc:cup:etheor:v:39:y:2023:i:5:p:900-949_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466622000287/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:39:y:2023:i:5:p:900-949_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.