IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v38y2022i3p497-535_3.html
   My bibliography  Save this article

Nonparametric Weighted Average Quantile Derivative

Author

Listed:
  • Lee, Ying-Ying

Abstract

The weighted average quantile derivative (AQD) is the expected value of the partial derivative of the conditional quantile function (CQF) weighted by a function of the covariates. We consider two weighting functions: a known function chosen by researchers and the density function of the covariates that is parallel to the average mean derivative in Powell, Stock, and Stoker (1989, Econometrica 57, 1403–1430). The AQD summarizes the marginal response of the covariates on the CQF and defines a nonparametric quantile regression coefficient. In semiparametric single-index and partially linear models, the AQD identifies the coefficients up to scale. In nonparametric nonseparable structural models, the AQD conveys an average structural effect under certain independence assumptions. Including a stochastic trimming function, the proposed two-step estimator is root-n-consistent for the AQD defined by the entire support of the covariates. To facilitate tractable asymptotic analysis, a key preliminary result is a new Bahadur-type linear representation of the generalized inverse kernel-based CQF estimator uniformly over the covariates in an expanding compact set and over the quantile levels. The weak convergence to Gaussian processes applies to the differentiable nonlinear functionals of the quantile processes.

Suggested Citation

  • Lee, Ying-Ying, 2022. "Nonparametric Weighted Average Quantile Derivative," Econometric Theory, Cambridge University Press, vol. 38(3), pages 497-535, June.
  • Handle: RePEc:cup:etheor:v:38:y:2022:i:3:p:497-535_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466621000232/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:38:y:2022:i:3:p:497-535_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.