IDEAS home Printed from
   My bibliography  Save this article

Nonparametric Two-Step Sieve M Estimation And Inference


  • Hahn, Jinyong
  • Liao, Zhipeng
  • Ridder, Geert


This article studies two-step sieve M estimation of general semi/nonparametric models, where the second step involves sieve estimation of unknown functions that may use the nonparametric estimates from the first step as inputs, and the parameters of interest are functionals of unknown functions estimated in both steps. We establish the asymptotic normality of the plug-in two-step sieve M estimate of a functional that could be root-n estimable. The asymptotic variance may not have a closed form expression, but can be approximated by a sieve variance that characterizes the effect of the first-step estimation on the second-step estimates. We provide a simple consistent estimate of the sieve variance, thereby facilitating Wald type inferences based on the Gaussian approximation. The finite sample performance of the two-step estimator and the proposed inference procedure are investigated in a simulation study.

Suggested Citation

  • Hahn, Jinyong & Liao, Zhipeng & Ridder, Geert, 2018. "Nonparametric Two-Step Sieve M Estimation And Inference," Econometric Theory, Cambridge University Press, vol. 34(6), pages 1281-1324, December.
  • Handle: RePEc:cup:etheor:v:34:y:2018:i:06:p:1281-1324_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157,
    2. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:34:y:2018:i:06:p:1281-1324_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.