IDEAS home Printed from
   My bibliography  Save this article

Asymptotic Properties Of Self-Normalized Linear Processes With Long Memory


  • Peligrad, Magda
  • Sang, Hailin


In this paper we study the convergence to fractional Brownian motion for long memory time series having independent innovations with infinite second moment. For the sake of applications we derive the self-normalized version of this theorem. The study is motivated by models arising in economic applications where often the linear processes have long memory, and the innovations have heavy tails.

Suggested Citation

  • Peligrad, Magda & Sang, Hailin, 2012. "Asymptotic Properties Of Self-Normalized Linear Processes With Long Memory," Econometric Theory, Cambridge University Press, vol. 28(03), pages 548-569, June.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:548-569_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    1. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    2. Robert de Jong, 2004. "Nonlinear estimators with integrated regressors but without exogeneity," Econometric Society 2004 North American Winter Meetings 324, Econometric Society.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhang, Li-Xin & Zhang, Yang, 2015. "Asymptotics for a class of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 47-56.
    2. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:548-569_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.