IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Semiparametric Efficiency Bound In Time-Series Models For Conditional Quantiles

Listed author(s):
  • Komunjer, Ivana
  • Vuong, Quang

We derive the semiparametric efficiency bound in dynamic models of conditional quantiles under a sole strong mixing assumption. We also provide an expression of Stein’s (1956) least favorable parametric submodel. Our approach is as follows: First, we construct a fully parametric submodel of the semiparametric model defined by the conditional quantile restriction that contains the data generating process. We then compare the asymptotic covariance matrix of the MLE obtained in this submodel with those of the M-estimators for the conditional quantile parameter that are consistent and asymptotically normal. Finally, we show that the minimum asymptotic covariance matrix of this class of M-estimators equals the asymptotic covariance matrix of the parametric submodel MLE. Thus, (i) this parametric submodel is a least favorable one, and (ii) the expression of the semiparametric efficiency bound for the conditional quantile parameter follows.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 26 (2010)
Issue (Month): 02 (April)
Pages: 383-405

in new window

Handle: RePEc:cup:etheor:v:26:y:2010:i:02:p:383-405_10
Contact details of provider: Postal:
Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK

Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:02:p:383-405_10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.