IDEAS home Printed from
   My bibliography  Save this article

Causality in the Long Run


  • Clive, W.J.
  • Lin, Jin-Lung


The definition of causation, discussed in Granger (1980) and elsewhere, has been widely applied in economics and in other disciplines. For this definition, a series yt is said to cause xt+l if it contains information about the forecastability for xt+l contained nowhere else in some large information set, which includes xt−j, j ≥ 0. However, it would be convenient to think of causality being different in extent or direction at seasonal or low frequencies, say, than at other frequencies. The fact that a stationary series is effectively the (uncountably infinite) sum of uncorrelated components, each of which is associated with a single frequency, or a narrow frequency band, introduces the possibility that the full causal relationship can be decomposed by frequency. This is known as the Wiener decomposition or the spectral decomposition of the series, as discussed by Hannan (1970). For any series generated by , where xt, and are both stationary, with finite variances and a(B) is a backward filterwith B the backward operator, there is a simple, well-known relationship between the spectral decompositions of the two series.

Suggested Citation

  • Clive, W.J. & Lin, Jin-Lung, 1995. "Causality in the Long Run," Econometric Theory, Cambridge University Press, vol. 11(3), pages 530-536, June.
  • Handle: RePEc:cup:etheor:v:11:y:1995:i:03:p:530-536_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:11:y:1995:i:03:p:530-536_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.