Author
Abstract
Let F denote a distribution function defined on the probability space (Ω,,P), which is absolutely continuous with respect to the Lebesgue measure in Rd with probability density function f. Let f0(·,β) be a parametric density function that depends on an unknown p × 1 vector β. In this paper, we consider tests of the goodness-of-fit of f0(·,β) for f(·) for some β based on (i) the integrated squared difference between a kernel estimate of f(·) and the quasimaximum likelihood estimate of f0(·,β) denoted by In and (ii) the integrated squared difference between a kernel estimate of f(·) and the corresponding kernel smoothed estimate of f0(·, β) denoted by Jn. It is shown in this paper that the amount of smoothing applied to the data in constructing the kernel estimate of f(·) determines the form of the test statistic based on In. For each test developed, we also examine its asymptotic properties including consistency and the local power property. In particular, we show that tests developed in this paper, except the first one, are more powerful than the Kolmogorov-Smirnov test under the sequence of local alternatives introduced in Rosenblatt [12], although they are less powerful than the Kolmogorov-Smirnov test under the sequence of Pitman alternatives. A small simulation study is carried out to examine the finite sample performance of one of these tests.
Suggested Citation
Fan, Yanqin, 1994.
"Testing the Goodness of Fit of a Parametric Density Function by Kernel Method,"
Econometric Theory, Cambridge University Press, vol. 10(2), pages 316-356, June.
Handle:
RePEc:cup:etheor:v:10:y:1994:i:02:p:316-356_00
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:10:y:1994:i:02:p:316-356_00. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.