IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v41y2011i02p611-644_00.html
   My bibliography  Save this article

Optimal Dividends and Capital Injections in the Dual Model with Diffusion

Author

Listed:
  • Avanzi, Benjamin
  • Shen, Jonathan
  • Wong, Bernard

Abstract

The dual model with diffusion is appropriate for companies with continuous expenses that are offset by stochastic and irregular gains. Examples include research-based or commission-based companies. In this context, Avanzi and Gerber (2008) showed how to determine the expected present value of dividends, if a barrier strategy is followed. In this paper, we further include capital injections and allow for (proportional) transaction costs both on dividends and capital injections. We determine the optimal dividend and (unconstrained) capital injection strategy (among all possible strategies) when jumps are hyperexponential. This strategy happens to be either a dividend barrier strategy without capital injections, or another dividend barrier strategy with forced injections when the surplus is null to prevent ruin. The latter is also shown to be the optimal dividend and capital injection strategy, if ruin is not allowed to occur. Both the choice to inject capital or not and the level of the optimal barrier depend on the parameters of the model. In all cases, we determine the optimal dividend barrier and show its existence and uniqueness. We also provide closed form representations of the value functions when the optimal strategy is applied. Results are illustrated.

Suggested Citation

  • Avanzi, Benjamin & Shen, Jonathan & Wong, Bernard, 2011. "Optimal Dividends and Capital Injections in the Dual Model with Diffusion," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 611-644, November.
  • Handle: RePEc:cup:astinb:v:41:y:2011:i:02:p:611-644_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000957/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:41:y:2011:i:02:p:611-644_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.