IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v24y1994i02p167-181_00.html
   My bibliography  Save this article

Two Stochastic Approaches for Discounting Actuarial Functions

Author

Listed:
  • Parker, Gary

Abstract

Two approaches used to model interest randomness are presented. They are the modeling of the force of interest accumulation function and the modeling of the force of interest. The expected value, standard deviation and coefficient of skewness of the present value of annuities-immediate are presented as illustrations. The implicit behavior of the force of interest under the two approaches is investigated by looking at a particular conditional expectation of the force of interest accumulation function.

Suggested Citation

  • Parker, Gary, 1994. "Two Stochastic Approaches for Discounting Actuarial Functions," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 167-181, November.
  • Handle: RePEc:cup:astinb:v:24:y:1994:i:02:p:167-181_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100002774/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Schepper, Ann & Goovaerts, Marc & Dhaene, Jan & Kaas, Rob & Vyncke, David, 2002. "Bounds for present value functions with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 87-103, August.
    2. Koch, Inge & Schepper, Ann De, 2007. "An application of comonotonicity and convex ordering to present values with truncated stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 386-402, May.
    3. Parker, Gary, 1995. "A second order stochastic differential equation for the force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 16(3), pages 211-224, July.
    4. Hoedemakers, Tom & Darkiewicz, Grzegorz & Goovaerts, Marc, 2005. "Approximations for life annuity contracts in a stochastic financial environment," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 239-269, October.
    5. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    6. Wang, Nan & Gerrard, Russell & Haberman, Steven, 2004. "The premium and the risk of a life policy in the presence of interest rate fluctuations," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 537-551, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:24:y:1994:i:02:p:167-181_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.