IDEAS home Printed from https://ideas.repec.org/a/col/000151/022167.html

Crime and economic factors in Medellín: a predictive study using machine learning
[Crimen y factores económicos en Medellín]

Author

Listed:
  • María Camila Ardila

    (Universidad del Rosario)

Abstract

Criminal activity hurts the quality of life and economic progress. With advancements in financial research and the use of machine learning to detect patterns, these techniques are now employed in various fields, including crime prevention. This study aims to predict the likelihood of different types of crimes in Medellín, Colombia, based on historical and sociodemographic data. Ordinary Least Squares, Random Forest, and Extreme Gradient Boosting models were used, achieving high accuracy. Key predictors include the proportion of men, people aged 16 to 30, unemployment rates, sisben membership, multidimensional poverty, housing deficits, and socioeconomic strata 1 and 2. La actividad delictiva repercute negativamente en la calidad de vida y el progreso económico. Con los avances en la investigación económica y el uso del aprendizaje automático para detectar patrones, estas técnicas se aplican ahora en diversos campos, incluida la prevención de la delincuencia. Este estudio predice la probabilidad de diferentes tipos de delitos en Medellín, Colombia, basándose en datos históricos y sociodemográficos. Se utilizaron modelos de Mínimos Cuadrados Ordinarios, Bosques Aleatorios y Extreme Gradient Boosting, logrando alta precisión. Los predictores claves incluyen la proporción de hombres, desempleo, afiliación al sisben, pobreza multidimensional y estratos socioeconómicos 1 y 2.

Suggested Citation

  • María Camila Ardila, 2024. "Crime and economic factors in Medellín: a predictive study using machine learning [Crimen y factores económicos en Medellín]," Revista de Economía del Rosario, Universidad del Rosario, vol. 27(2), pages 1-57.
  • Handle: RePEc:col:000151:022167
    DOI: 10.12804/revistas.urosario.edu.co/e
    as

    Download full text from publisher

    File URL: https://revistas.urosario.edu.co/index.php/economia/article/view/14992
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.12804/revistas.urosario.edu.co/e?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • H70 - Public Economics - - State and Local Government; Intergovernmental Relations - - - General
    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000151:022167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Facultad de Economía (email available below). General contact details of provider: https://edirc.repec.org/data/ferosco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.