Author
Listed:
- Jaromír DUŠEK
(Department of Hydraulics and Hydrology, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)
- Michal DOHNAL
(Department of Hydraulics and Hydrology, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)
- Tomáš VOGEL
(Department of Hydraulics and Hydrology, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)
Abstract
One of the most important properties, affecting the flow regime in the soil profile, is the topsoil saturated hydraulic conductivity (Ks). The laboratory-determined Ks often fails to characterise properly the respective field value; the Ks lab estimation requires labour intensive sampling and fixing procedures, difficult to follow in highly structured and stony soils. Thus, simple single- or double-ring ponded infiltration experiments are frequently performed in situ to obtain the field scale information required. In the present study, several important factors, affecting the infiltration rate during the infiltration experiments, are analysed using three-dimensional axisymmetric finite-element model S2D. The examined factors include: (1) the diameter of the infiltration ring, (2) the depth of water in the ring, (3) the depth of the ring insertion under the soil surface, (4) the size and the shape of the finite-element mesh near the ring wall, and (5) the double- vs. single-ring setup. The analysis suggests that the depth of the ring insertion significantly influences the infiltration rate. The simulated infiltration rates also exhibit high sensitivity to the shape of the finite-element mesh near the ring wall. The steady-state infiltration rate, even when considering a double-ring experiment, is significantly higher than the topsoil saturated hydraulic conductivity. The change of the water depth in the outer ring has only a small impact on the infiltration rate in the inner ring.
Suggested Citation
Jaromír DUŠEK & Michal DOHNAL & Tomáš VOGEL, 2009.
"Numerical analysis of ponded infiltration experiment under different experimental conditions,"
Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 4(SpecialIs), pages 22-27.
Handle:
RePEc:caa:jnlswr:v:4:y:2009:i:specialissue2:id:1368-swr
DOI: 10.17221/1368-SWR
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:4:y:2009:i:specialissue2:id:1368-swr. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.