Author
Listed:
- Ghazal MORADI
(Department of Water Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran)
- Behrouz MEHDINEJADIANI
Abstract
This paper compared the abilities of advection-dispersion equation (ADE) and spatial fractional advection-dispersion equation (sFADE) to describe the migration of a non-reactive contaminant in homogeneous and heterogeneous soils. To this end, laboratory tests were conducted in a sandbox sizing 2.5 × 0.1 × 0.6 m (length × width × height). After performing a parametric sensitivity analysis, parameters of sFADE and ADE were individually estimated using the inverse problem method at each distance. The dependency of estimated parameters on distance was examined. The estimated parameters at 30 cm were used to predict breakthrough curves (BTCs) at subsequent distances. The results of sensitivity analysis indicated that average pore-water velocity and dispersion coefficient were, respectively, the most and least sensitive parameters in both mathematical models. The values of fractional differentiation orders (α) for sFADE were smaller than 2 in both soils. The scale-dependency of the dispersion coefficients of ADE and sFADE was observed in both soils. However, the application of sFADE to describe solute transport reduced the scale effect on the dispersion coefficient, especially in the heterogeneous soil. For the homogeneous soil, the predicting results of ADE and sFADE were nearly similar, while for the heterogeneous soil, the predicting results of sFADE were more satisfactory in comparison with those of ADE, especially when the transport distance increased. Compared to ADE, the sFADE simulated somewhat better the tailing parts of BTCs and showed the earlier arrival of tracer. Overall, the solute transport, especially in the heterogeneous soil, was non-Fickian and the sFADE somewhat better described non-Fickian transport.
Suggested Citation
Ghazal MORADI & Behrouz MEHDINEJADIANI, 2018.
"Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation,"
Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 13(1), pages 18-28.
Handle:
RePEc:caa:jnlswr:v:13:y:2018:i:1:id:245-2016-swr
DOI: 10.17221/245/2016-SWR
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:13:y:2018:i:1:id:245-2016-swr. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.