Author
Listed:
- Abeer H. Elhakem
(Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia)
- Rasha S. El-Serafy
(Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, Egypt)
Abstract
Developing and employing new, sustainable, and eco-friendly biostimulants that enhance plant growth and alleviate the harmful effects of environmental challenges is a major focus for many researchers. Salt stress is a critical constraint on plant growth and a limiting factor in crop productivity, particularly during the early developmental stages in the nurseries. Syzygium cumini (L.) Skeels (Java plum) is an important fruit tree and widely cultivated in gardens as an ornamental plant. This study was designed to develop Cassia javanica subsp. nodosa leaf extract (CLE) as a new sustainable and eco-friendly biostimulant capable of triggering the metabolic adaptation to salt stress in Java plum seedlings grown in nurseries. CLE successfully mitigated reductions in growth, biomass yield, and secondary metabolite production caused by salinity. Although salt stress depressed morphological characters and biomass yield, CLE foliar spray enhanced these parameters. Moreover, CLE enhanced the ferric reducing antioxidant potential, catalase, and superoxide dismutase enzyme activities, increased phenolic content, and reduced hydrogen peroxide (H2O2) accumulation and lipid peroxidation. Additionally, CLE application increased seedling biomass and stimulated antioxidant activity, osmoprotectant accumulation, and overall tolerance to salinity stress. These observations provide new insights into CLE's potential as an eco-friendly biostimulant for enhancing salt tolerance in Java plum seedlings.
Suggested Citation
Abeer H. Elhakem & Rasha S. El-Serafy, 2026.
"The changes in growth and metabolic adaptation responses in Java plum seedlings exposed to Cassia javanica extract under salinity,"
Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 72(1), pages 39-48.
Handle:
RePEc:caa:jnlpse:v:72:y:2026:i:1:id:374-2025-pse
DOI: 10.17221/374/2025-PSE
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:72:y:2026:i:1:id:374-2025-pse. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.