IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Detecting Multiple Changes in Persistence

Listed author(s):
  • Leybourne Stephen


    (University of Nottingham, UK)

  • Kim Tae-Hwan


    (Yonsei University)

  • Taylor A.M. Robert


    (University of Nottingham, UK)

This paper considers the problem of testing for and dating changes (at unknown points) in the order of integration of a time series between different trend-stationary and difference-stationary regimes. While existing procedures in the literature are designed for processes displaying only a single such change in persistence, our proposed methodology is also valid in the presence of multiple changes in persistence. Our procedure is based on sequences of doubly-recursive implementations of the regression-based unit root statistic of Elliott et al. (1996). The asymptotic validity of our procedure is demonstrated analytically. We use Monte Carlo methods to simulate both finite sample and asymptotic critical values for our proposed testing procedure and to simulate the finite sample behaviour of our procedure against a variety of single and multiple persistence change series. The procedure is shown to work well in practice. The impact of deterministic level and trend breaks on our procedure is also discussed. An empirical application of the procedure to interest rate data is considered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by De Gruyter in its journal Studies in Nonlinear Dynamics & Econometrics.

Volume (Year): 11 (2007)
Issue (Month): 3 (September)
Pages: 1-34

in new window

Handle: RePEc:bpj:sndecm:v:11:y:2007:i:3:n:2
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:11:y:2007:i:3:n:2. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.