IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v3y2004i1n32.html
   My bibliography  Save this article

Confidence Levels for the Comparison of Microarray Experiments

Author

Listed:
  • Shedden Kerby

    (University of Michigan)

Abstract

A common experimental strategy utilizing microarrays is to develop a signature of genes responding to some treatment in a model system, and then ask whether the same genes respond in an analogous way in a more natural and uncontrolled environment. In statistical terms, the question posed is whether genes score similarly on some statistical test in two independent data sets. Approaches to this problem ignoring gene/gene correlations common to all microarray data sets are known to give overstated statistical confidence levels. Permutation approaches have been proposed to give more accurate confidence levels, but can not be applied when sample sizes are small. Here we argue that the product moment correlation between test statistics in the two experiments is an ideal measure for summarizing concordance between the experiments, as confidence levels accounting for intergene correlations depend only on a single number -- the average squared correlation between gene pairs in the data set. The resulting null standard deviation is shown to vary by less than a factor of two over six distinct experimental data sets, suggesting that a universal constant may be used for this quantity. We show how a hidden assumption of the permutation approach may lead to incorrect p-values, while the analytic approach presented here is shown to be resistant to this assumption.

Suggested Citation

  • Shedden Kerby, 2004. "Confidence Levels for the Comparison of Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-18, November.
  • Handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:32
    DOI: 10.2202/1544-6115.1088
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1088
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.