IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v16y2017i2p95-106n1.html
   My bibliography  Save this article

Missing value imputation for gene expression data by tailored nearest neighbors

Author

Listed:
  • Faisal Shahla

    (Department of Statistics, Ludwig-Maximilians-University Munich, Germany)

  • Tutz Gerhard

    (Department of Statistics, Ludwig-Maximilians-University Munich, Germany)

Abstract

High dimensional data like gene expression and RNA-sequences often contain missing values. The subsequent analysis and results based on these incomplete data can suffer strongly from the presence of these missing values. Several approaches to imputation of missing values in gene expression data have been developed but the task is difficult due to the high dimensionality (number of genes) of the data. Here an imputation procedure is proposed that uses weighted nearest neighbors. Instead of using nearest neighbors defined by a distance that includes all genes the distance is computed for genes that are apt to contribute to the accuracy of imputed values. The method aims at avoiding the curse of dimensionality, which typically occurs if local methods as nearest neighbors are applied in high dimensional settings. The proposed weighted nearest neighbors algorithm is compared to existing missing value imputation techniques like mean imputation, KNNimpute and the recently proposed imputation by random forests. We use RNA-sequence and microarray data from studies on human cancer to compare the performance of the methods. The results from simulations as well as real studies show that the weighted distance procedure can successfully handle missing values for high dimensional data structures where the number of predictors is larger than the number of samples. The method typically outperforms the considered competitors.

Suggested Citation

  • Faisal Shahla & Tutz Gerhard, 2017. "Missing value imputation for gene expression data by tailored nearest neighbors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 95-106, April.
  • Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:2:p:95-106:n:1
    DOI: 10.1515/sagmb-2015-0098
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2015-0098
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2015-0098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph K. Pickrell & John C. Marioni & Athma A. Pai & Jacob F. Degner & Barbara E. Engelhardt & Everlyne Nkadori & Jean-Baptiste Veyrieras & Matthew Stephens & Yoav Gilad & Jonathan K. Pritchard, 2010. "Understanding mechanisms underlying human gene expression variation with RNA sequencing," Nature, Nature, vol. 464(7289), pages 768-772, April.
    2. Stephen B. Montgomery & Micha Sammeth & Maria Gutierrez-Arcelus & Radoslaw P. Lach & Catherine Ingle & James Nisbett & Roderic Guigo & Emmanouil T. Dermitzakis, 2010. "Transcriptome genetics using second generation sequencing in a Caucasian population," Nature, Nature, vol. 464(7289), pages 773-777, April.
    3. Feten Guri & Almøy Trygve & Aastveit Are H., 2005. "Prediction of Missing Values in Microarray and Use of Mixed Models to Evaluate the Predictors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-18, May.
    4. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    5. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    6. Tutz, Gerhard & Ramzan, Shahla, 2015. "Improved methods for the imputation of missing data by nearest neighbor methods," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 84-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Ramzan, Shahla, 2015. "Improved methods for the imputation of missing data by nearest neighbor methods," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 84-99.
    2. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    3. Xu, Ping & Brock, Guy N. & Parrish, Rudolph S., 2009. "Modified linear discriminant analysis approaches for classification of high-dimensional microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1674-1687, March.
    4. Fisher, Thomas J. & Sun, Xiaoqian, 2011. "Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1909-1918, May.
    5. Thanh Nguyen & Asim Bhatti & Samuel Yang & Saeid Nahavandi, 2016. "RNA-Seq Count Data Modelling by Grey Relational Analysis and Nonparametric Gaussian Process," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-18, October.
    6. Pedro Duarte Silva, A., 2011. "Two-group classification with high-dimensional correlated data: A factor model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2975-2990, November.
    7. Chuan Gao & Ian C McDowell & Shiwen Zhao & Christopher D Brown & Barbara E Engelhardt, 2016. "Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-39, July.
    8. Kensuke Yamaguchi & Kazuyoshi Ishigaki & Akari Suzuki & Yumi Tsuchida & Haruka Tsuchiya & Shuji Sumitomo & Yasuo Nagafuchi & Fuyuki Miya & Tatsuhiko Tsunoda & Hirofumi Shoda & Keishi Fujio & Kazuhiko , 2022. "Splicing QTL analysis focusing on coding sequences reveals mechanisms for disease susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Alexandra C Nica & Leopold Parts & Daniel Glass & James Nisbet & Amy Barrett & Magdalena Sekowska & Mary Travers & Simon Potter & Elin Grundberg & Kerrin Small & Åsa K Hedman & Veronique Bataille & Jo, 2011. "The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-9, February.
    10. Jean Francois Lefebvre & Emilio Vello & Bing Ge & Stephen B Montgomery & Emmanouil T Dermitzakis & Tomi Pastinen & Damian Labuda, 2012. "Genotype-Based Test in Mapping Cis-Regulatory Variants from Allele-Specific Expression Data," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-15, June.
    11. Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
    12. Daria V Zhernakova & Eleonora de Klerk & Harm-Jan Westra & Anastasios Mastrokolias & Shoaib Amini & Yavuz Ariyurek & Rick Jansen & Brenda W Penninx & Jouke J Hottenga & Gonneke Willemsen & Eco J de Ge, 2013. "DeepSAGE Reveals Genetic Variants Associated with Alternative Polyadenylation and Expression of Coding and Non-coding Transcripts," PLOS Genetics, Public Library of Science, vol. 9(6), pages 1-15, June.
    13. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    14. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    16. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    17. Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
    18. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    19. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    20. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:2:p:95-106:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.