IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v12y2013i1p49-70n7.html
   My bibliography  Save this article

Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data

Author

Listed:
  • Di Yanming

    (Department of Statistics, Oregon State University, 44 Kidder Hall, Corvallis, OR 97330, USA)

  • Emerson Sarah C.
  • Schafer Daniel W.
  • Kimbrel Jeffrey A.
  • Chang Jeff H.

    (Oregon State University)

Abstract

RNA sequencing (RNA-Seq) is the current method of choice for characterizing transcriptomes and quantifying gene expression changes. This next generation sequencing-based method provides unprecedented depth and resolution. The negative binomial (NB) probability distribution has been shown to be a useful model for frequencies of mapped RNA-Seq reads and consequently provides a basis for statistical analysis of gene expression. Negative binomial exact tests are available for two-group comparisons but do not extend to negative binomial regression analysis, which is important for examining gene expression as a function of explanatory variables and for adjusted group comparisons accounting for other factors. We address the adequacy of available large-sample tests for the small sample sizes typically available from RNA-Seq studies and consider a higher-order asymptotic (HOA) adjustment to likelihood ratio tests. We demonstrate that 1) the HOA-adjusted likelihood ratio test is practically indistinguishable from the exact test in situations where the exact test is available, 2) the type I error of the HOA test matches the nominal specification in regression settings we examined via simulation, and 3) the power of the likelihood ratio test does not appear to be affected by the HOA adjustment. This work helps clarify the accuracy of the unadjusted likelihood ratio test and the degree of improvement available with the HOA adjustment. Furthermore, the HOA test may be preferable even when the exact test is available because it does not require ad hoc library size adjustments.

Suggested Citation

  • Di Yanming & Emerson Sarah C. & Schafer Daniel W. & Kimbrel Jeffrey A. & Chang Jeff H., 2013. "Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 49-70, March.
  • Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:1:p:49-70:n:7
    DOI: 10.1515/sagmb-2012-0071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2012-0071
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2012-0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Yanming & Schafer Daniel W & Cumbie Jason S & Chang Jeff H, 2011. "The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    2. Gu Mi & Yanming Di & Daniel W Schafer, 2015. "Goodness-of-Fit Tests and Model Diagnostics for Negative Binomial Regression of RNA Sequencing Data," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-16, March.
    3. Lund Steven P. & Nettleton Dan & McCarthy Davis J. & Smyth Gordon K., 2012. "Detecting Differential Expression in RNA-sequence Data Using Quasi-likelihood with Shrunken Dispersion Estimates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-44, October.
    4. Gu Mi & Yanming Di, 2015. "The Level of Residual Dispersion Variation and the Power of Differential Expression Tests for RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-25, April.
    5. Gu Mi & Yanming Di & Sarah Emerson & Jason S Cumbie & Jeff H Chang, 2012. "Length Bias Correction in Gene Ontology Enrichment Analysis Using Logistic Regression," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
    6. Jungsoo Gim & Sungho Won & Taesung Park, 2016. "LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    7. Kotoka Ekua & Orr Megan, 2017. "Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 291-312, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:12:y:2013:i:1:p:49-70:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.