Author
Listed:
- Bras Pierre
(Laboratoire de Probabilités, Statistiques et Modélisation, Sorbonne Université, Paris, France)
- Pagès Gilles
(Laboratoire de Probabilités, Statistiques et Modélisation, Sorbonne Université, Paris, France)
Abstract
We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\colon\mathbb{R}^{d}\to\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d Y t = − σ σ ⊤ ∇ V ( Y t ) d t + a ( t ) σ ( Y t ) d W t + a ( t ) 2 Υ ( Y t ) d t dY_{t}=-\sigma\sigma^{\top}\nabla V(Y_{t})\,dt+a(t)\sigma(Y_{t})\,dW_{t}+a(t)^{2}\Upsilon(Y_{t})\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ( R ) \sigma\colon\mathbb{R}^{d}\to\mathcal{M}_{d}(\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\colon\mathbb{R}^{+}\to\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d Y t = − ∇ V ( Y t ) d t + σ d W t dY_{t}=-\nabla V(Y_{t})\,dt+\sigma\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \bar{Y}_{t} to argmin ( V ) \operatorname{argmin}(V) with the classical schedule a ( t ) = A log − 1 / 2 ( t ) a(t)=A\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.
Suggested Citation
Bras Pierre & Pagès Gilles, 2023.
"Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation,"
Monte Carlo Methods and Applications, De Gruyter, vol. 29(3), pages 203-219, September.
Handle:
RePEc:bpj:mcmeap:v:29:y:2023:i:3:p:203-219:n:1
DOI: 10.1515/mcma-2023-2009
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:29:y:2023:i:3:p:203-219:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.