Author
Listed:
- Corcoran Jem N.
(Department of Applied Mathematics, University of Colorado, Box 526, Boulder CO 80309-0526, USA)
- Miller Caleb
(Department of Applied Mathematics, University of Colorado, Box 526, Boulder CO 80309-0526, USA)
Abstract
Order statistics arising from 𝑚 independent but not identically distributed random variables are typically constructed by arranging some X 1 , X 2 , … , X m X_{1},X_{2},\ldots,X_{m} , with X i X_{i} having distribution function F i ( x ) F_{i}(x) , in increasing order denoted as X ( 1 ) ≤ X ( 2 ) ≤ ⋯ ≤ X ( m ) X_{(1)}\leq X_{(2)}\leq\cdots\leq X_{(m)} . In this case, X ( i ) X_{(i)} is not necessarily associated with F i ( x ) F_{i}(x) . Assuming one can simulate values from each distribution, one can generate such “non-iid” order statistics by simulating X i X_{i} from F i F_{i} , for i = 1 , 2 , … , m i=1,2,\ldots,m , and arranging them in order. In this paper, we consider the problem of simulating ordered values X ( 1 ) , X ( 2 ) , … , X ( m ) X_{(1)},X_{(2)},\ldots,X_{(m)} such that the marginal distribution of X ( i ) X_{(i)} is F i ( x ) F_{i}(x) . This problem arises in Bayesian principal components analysis (BPCA) where the X i X_{i} are ordered eigenvalues that are a posteriori independent but not identically distributed. We propose a novel coupling-from-the-past algorithm to “perfectly” (up to computable order of accuracy) simulate such order-constrained non-iid order statistics. We demonstrate the effectiveness of our approach for several examples, including the BPCA problem.
Suggested Citation
Corcoran Jem N. & Miller Caleb, 2022.
"Controlled accuracy Gibbs sampling of order-constrained non-iid ordered random variates,"
Monte Carlo Methods and Applications, De Gruyter, vol. 28(4), pages 279-292, December.
Handle:
RePEc:bpj:mcmeap:v:28:y:2022:i:4:p:279-292:n:3
DOI: 10.1515/mcma-2022-2121
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:28:y:2022:i:4:p:279-292:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.