IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v21y2015i2p121-137n2.html
   My bibliography  Save this article

A class of probabilistic models for the Schrödinger equation

Author

Listed:
  • Wagner Wolfgang

    (Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany)

Abstract

A class of stochastic particle models for the spatially discretized time-dependent Schrödinger equation is constructed. Each particle is characterized by a complex-valued weight and a position. The particle weights change according to some deterministic rules between the jumps. The jumps are determined by the creation of offspring. The main result is that certain functionals of the particle systems satisfy the Schrödinger equation. The proofs are based on the theory of piecewise deterministic Markov processes.

Suggested Citation

  • Wagner Wolfgang, 2015. "A class of probabilistic models for the Schrödinger equation," Monte Carlo Methods and Applications, De Gruyter, vol. 21(2), pages 121-137, June.
  • Handle: RePEc:bpj:mcmeap:v:21:y:2015:i:2:p:121-137:n:2
    DOI: 10.1515/mcma-2014-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2014-0014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2014-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:21:y:2015:i:2:p:121-137:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.