IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i1n27.html
   My bibliography  Save this article

Bivariate Zero-Inflated Regression for Count Data: A Bayesian Approach with Application to Plant Counts

Author

Listed:
  • Majumdar Anandamayee

    (Arizona State University)

  • Gries Corinna

    (University of Wisconsin-Madison)

Abstract

Lately, bivariate zero-inflated (BZI) regression models have been used in many instances in the medical sciences to model excess zeros. Examples include the BZI Poisson (BZIP), BZI negative binomial (BZINB) models, etc. Such formulations vary in the basic modeling aspect and use the EM algorithm (Dempster, Laird and Rubin, 1977) for parameter estimation. A different modeling formulation in the Bayesian context is given by Dagne (2004). We extend the modeling to a more general setting for multivariate ZIP models for count data with excess zeros as proposed by Li, Lu, Park, Kim, Brinkley and Peterson (1999), focusing on a particular bivariate regression formulation. For the basic formulation in the case of bivariate data, we assume that Xi are (latent) independent Poisson random variables with parameters ? i, i = 0, 1, 2. A bi-variate count vector (Y1, Y2) response follows a mixture of four distributions; p0 stands for the mixing probability of a point mass distribution at (0, 0); p1, the mixing probability that Y2 = 0, while Y1 = X0 + X1; p2, the mixing probability that Y1 = 0 while Y2 = X0 + X2; and finally (1 - p0 - p1 - p2), the mixing probability that Yi = Xi + X0, i = 1, 2. The choice of the parameters {pi, ? i, i = 0, 1, 2} ensures that the marginal distributions of Yi are zero inflated Poisson (? 0 + ? i). All the parameters thus introduced are allowed to depend on co-variates through canonical link generalized linear models (McCullagh and Nelder, 1989). This flexibility allows for a range of real-life applications, especially in the medical and biological fields, where the counts are bivariate in nature (with strong association between the processes) and where there are excess of zeros in one or both processes. Our contribution in this paper is to employ a fully Bayesian approach consolidating the work of Dagne (2004) and Li et al. (1999) generalizing the modeling and sampling-based methods described by Ghosh, Mukhopadhyay and Lu (2006) to estimate the parameters and obtain posterior credible intervals both in the case where co-variates are not available as well as in the case where they are. In this context, we provide explicit data augmentation techniques that lend themselves to easier implementation of the Gibbs sampler by giving rise to well-known and closed-form posterior distributions in the bivariate ZIP case. We then use simulations to explore the effectiveness of this estimation using the Bayesian BZIP procedure, comparing the performance to the Bayesian and classical ZIP approaches. Finally, we demonstrate the methodology based on bivariate plant count data with excess zeros that was collected on plots in the Phoenix metropolitan area and compare the results with independent ZIP regression models fitted to both processes.

Suggested Citation

  • Majumdar Anandamayee & Gries Corinna, 2010. "Bivariate Zero-Inflated Regression for Count Data: A Bayesian Approach with Application to Plant Counts," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-26, August.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:27
    DOI: 10.2202/1557-4679.1229
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1229
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Neelon & Dongjun Chung, 2017. "The LZIP: A Bayesian latent factor model for correlated zero-inflated counts," Biometrics, The International Biometric Society, vol. 73(1), pages 185-196, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.