Author
Listed:
- Thompson John R.
(Department of Health Sciences, Leicester, UK)
- Minelli Cosetta
(Population Health and Occupational Disease Section, National Heart and Lung Institute, Imperial College, London, UK)
- Del Greco M Fabiola
(Center for Biomedicine, EURAC, Bolzano, Italy)
Abstract
Mendelian randomization (MR) is a technique that seeks to establish causation between an exposure and an outcome using observational data. It is an instrumental variable analysis in which genetic variants are used as the instruments. Many consortia have meta-analysed genome-wide associations between variants and specific traits and made their results publicly available. Using such data, it is possible to derive genetic risk scores for one trait and to deduce the association of that same risk score with a second trait. The properties of this approach are investigated by simulation and by evaluating the potentially causal effect of birth weight on adult glucose level. In such analyses, it is important to decide whether one is interested in the risk score based on a set of estimated regression coefficients or the score based on the true underlying coefficients. MR is primarily concerned with the latter. Methods designed for the former question will under-estimate the variance if used for MR. This variance can be corrected but it needs to be done with care to avoid introducing bias. MR based on public data sources is useful and easy to perform, but care must be taken to avoid false precision or bias.
Suggested Citation
Thompson John R. & Minelli Cosetta & Del Greco M Fabiola, 2016.
"Mendelian Randomization using Public Data from Genetic Consortia,"
The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-11, November.
Handle:
RePEc:bpj:ijbist:v:12:y:2016:i:2:p:11:n:8
DOI: 10.1515/ijb-2015-0074
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:11:n:8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.