IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v2y2013i6p673-690.html
   My bibliography  Save this article

Separation technologies for current and future biorefineries—status and potential of membrane‐based separation

Author

Listed:
  • Lan Ying Jiang
  • Jia Ming Zhu

Abstract

Biorefinery is one of the most important industries in the modern world, as it provides a variety of products, particularly renewable bioenergy, which is highly vital to human existence (?). Among the separation technologies applied in biorefinery, membrane‐based separation has received great attention in past decades as it is in line with the worldwide move toward higher energy efficiency and lower environmental impact. Analysis of the academic and industrial activities being undertaken reveals that porous membranes like nanofiltration, ultrafiltration, and microfiltration are generally associated with pretreatment and hydrolysis procedures where separation is relied on for recovering value‐added materials with wide range of molecular weight and facilitating follow‐up bioconversion. An emerging field that highly appreciates porous membranes is biodiesel purification. Molecular level separations including gas product separation existing in thermal and anaerobic conversions and liquid alcoholic products recovery in microbial/enzymatic process offer more opportunity to membrane‐based gas separation and pervaporation using dense membranes. Membrane distillation and supported liquid membrane, commonly classed as new generation of membrane technology, show the potential in bioethanol recovery and hydrolysis step, respectively. Nonetheless, their competitiveness is to be confirmed. The function of membrane separation is being pushed further. Bearing in mind the importance of membranes with higher quality in terms of separation efficiency and material stability, we must also be prepared for the challenges deriving from some engineering aspects such as membrane fouling, module design, and process optimization. This article is categorized under: Bioenergy > Science and Materials

Suggested Citation

  • Lan Ying Jiang & Jia Ming Zhu, 2013. "Separation technologies for current and future biorefineries—status and potential of membrane‐based separation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(6), pages 673-690, November.
  • Handle: RePEc:bla:wireae:v:2:y:2013:i:6:p:673-690
    DOI: 10.1002/wene.73
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.73
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.73?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:2:y:2013:i:6:p:673-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.