IDEAS home Printed from https://ideas.repec.org/a/bla/srbeha/v36y2019i6p835-844.html
   My bibliography  Save this article

Modelling and simulation of the behavior of a shape memory membrane for programmable matter 4D prototyping

Author

Listed:
  • Mohamed Ennaji
  • Souad Tayane
  • Jaafar Gaber

Abstract

In almost all areas of the industry and more generally in the sector of development of manufacturing products, the realization of the product passes through several successive stages going from the design to the realization of the product. The most critical phase is prototyping because it is at this point that usually the most important decisions are made. In several sectors this step is very expensive, and in any case, the prototype undergoes several modifications and requires several validations before it is definitive for the transition to production. The prototype must generally constitute a model of the product that has all or part of the technical qualities and operating characteristics that must appear in the final product, to demonstrate or affirm the validity of the concept and thus its final validation, which increases the overall cost of the prototyping phase. In the vast majority of prototyping devices available for the moment, be it by additive or subtractive process, the realization of the prototype requires a lot of time, and once the prototype is made, it can only be modified by destructive techniques because the materials used are frozen and do not allow easy reuse. This study proposes a device for the prototyping of product, allowing a modification of the geometry of the prototype by means of a deformable composite membrane with shape memory, reusable and programmable. The device in question consists of a flexible composite membrane whose matrix is a flexible polymer, and the reinforcement is a shape‐memory alloy fibre and rubber effect, having a given electrical resistance. These shape memory fibres are woven in such a way as to ensure deformations in the direction normal to the plane of the membrane by injecting the current into each fibre. This is ensured by a cross weave allowing the control of the direction of the overall deformation through the deformation specific to each fibre. In this research work, we present the results of the modelling and simulation of the behaviour of a composite membrane with shape memory.

Suggested Citation

  • Mohamed Ennaji & Souad Tayane & Jaafar Gaber, 2019. "Modelling and simulation of the behavior of a shape memory membrane for programmable matter 4D prototyping," Systems Research and Behavioral Science, Wiley Blackwell, vol. 36(6), pages 835-844, November.
  • Handle: RePEc:bla:srbeha:v:36:y:2019:i:6:p:835-844
    DOI: 10.1002/sres.2650
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sres.2650
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sres.2650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:srbeha:v:36:y:2019:i:6:p:835-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/1092-7026 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.