IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v52y2025i3p1422-1443.html
   My bibliography  Save this article

Sparse Fréchet sufficient dimension reduction with graphical structure among predictors

Author

Listed:
  • Jiaying Weng
  • Kai Tan
  • Cheng Wang
  • Zhou Yu

Abstract

Fréchet regression has received considerable attention to model metric‐space valued responses that are complex and non‐Euclidean data, such as probability distributions and vectors on the unit sphere. However, existing Fréchet regression literature focuses on the classical setting where the predictor dimension is fixed, and the sample size goes to infinity. This paper proposes sparse Fréchet sufficient dimension reduction with graphical structure among high‐dimensional Euclidean predictors. In particular, we propose a convex optimization problem that leverages the graphical information among predictors and avoids inverting the high‐dimensional covariance matrix. We also provide the Alternating Direction Method of Multipliers (ADMM) algorithm to solve the optimization problem. Theoretically, the proposed method achieves subspace estimation and variable selection consistency under suitable conditions. Extensive simulations and a real data analysis are carried out to illustrate the finite‐sample performance of the proposed method.

Suggested Citation

  • Jiaying Weng & Kai Tan & Cheng Wang & Zhou Yu, 2025. "Sparse Fréchet sufficient dimension reduction with graphical structure among predictors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 52(3), pages 1422-1443, September.
  • Handle: RePEc:bla:scjsta:v:52:y:2025:i:3:p:1422-1443
    DOI: 10.1111/sjos.12791
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12791
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:52:y:2025:i:3:p:1422-1443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.