IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i1p89-101.html
   My bibliography  Save this article

Remove unwanted variation retrieves unknown experimental designs

Author

Listed:
  • Ingrid M. Lönnstedt
  • Terence P. Speed

Abstract

Remove unwanted variation (RUV) is an estimation and normalization system in which the underlying correlation structure of a multivariate dataset is estimated from negative control measurements, typically gene expression values, which are assumed to stay constant across experimental conditions. In this paper we derive the weight matrix which is estimated and incorporated into the generalized least squares estimates of RUV‐inverse, and show that this weight matrix estimates the average covariance matrix across negative control measurements. RUV‐inverse can thus be viewed as an estimation method adjusting for an unknown experimental design. We show that for a balanced incomplete block design (BIBD), RUV‐inverse recovers intra‐ and interblock estimates of the relevant parameters and combines them as a weighted sum just like the best linear unbiased estimator (BLUE), except that the weights are globally estimated from the negative control measurements instead of being individually optimized to each measurement as in the classical, single measurement BIBD BLUE.

Suggested Citation

  • Ingrid M. Lönnstedt & Terence P. Speed, 2023. "Remove unwanted variation retrieves unknown experimental designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 89-101, March.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:89-101
    DOI: 10.1111/sjos.12633
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12633
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu Shi & Wang Miao & Jennifer C. Nelson & Eric J. Tchetgen Tchetgen, 2020. "Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(2), pages 521-540, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
    2. Zhang, Jeffrey & Li, Wei & Miao, Wang & Tchetgen Tchetgen, Eric, 2023. "Proximal causal inference without uniqueness assumptions," Statistics & Probability Letters, Elsevier, vol. 198(C).
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Mar 2024.
    4. AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
    5. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    6. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    7. Guido Imbens & Nathan Kallus & Xiaojie Mao & Yuhao Wang, 2022. "Long-term Causal Inference Under Persistent Confounding via Data Combination," Papers 2202.07234, arXiv.org, revised Aug 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:89-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.