IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v39y2012i2p259-281.html
   My bibliography  Save this article

Estimating the Conditional Error Distribution in Non-parametric Regression

Author

Listed:
  • SEBASTIAN KIWITT
  • NATALIE NEUMEYER

Abstract

No abstract is available for this item.

Suggested Citation

  • Sebastian Kiwitt & Natalie Neumeyer, 2012. "Estimating the Conditional Error Distribution in Non-parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 259-281, June.
  • Handle: RePEc:bla:scjsta:v:39:y:2012:i:2:p:259-281
    DOI: j.1467-9469.2011.00763.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9469.2011.00763.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9469.2011.00763.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    2. Jun Zhang & Yiping Yang & Gaorong Li, 2020. "Logarithmic calibration for multiplicative distortion measurement errors regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 462-488, November.
    3. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    4. Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. repec:hum:wpaper:sfb649dp2014-028 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:39:y:2012:i:2:p:259-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.