IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i4p719-737.html
   My bibliography  Save this article

Improved Sampling‐Importance Resampling and Reduced Bias Importance Sampling

Author

Listed:
  • Øivind Skare
  • Erik Bølviken
  • Lars Holden

Abstract

. The sampling‐importance resampling (SIR) algorithm aims at drawing a random sample from a target distribution π. First, a sample is drawn from a proposal distribution q, and then from this a smaller sample is drawn with sample probabilities proportional to the importance ratios π/q. We propose here a simple adjustment of the sample probabilities and show that this gives faster convergence. The results indicate that our version converges better also for small sample sizes. The SIR algorithms are compared with the Metropolis–Hastings (MH) algorithm with independent proposals. Although MH converges asymptotically faster, the results indicate that our improved SIR version is better than MH for small sample sizes. We also establish a connection between the SIR algorithms and importance sampling with normalized weights. We show that the use of adjusted SIR sample probabilities as importance weights reduces the bias of the importance sampling estimate.

Suggested Citation

  • Øivind Skare & Erik Bølviken & Lars Holden, 2003. "Improved Sampling‐Importance Resampling and Reduced Bias Importance Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 719-737, December.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:719-737
    DOI: 10.1111/1467-9469.00360
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00360
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    2. Boyang Shang & Daniel W. Apley & Sanjay Mehrotra, 2023. "Diversity Subsampling: Custom Subsamples from Large Data Sets," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 161-182, October.
    3. Tan, Ming & Tian, Guo-Liang & Wang Ng, Kai, 2006. "Hierarchical models for repeated binary data using the IBF sampler," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1272-1286, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:719-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.