IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v26y1999i3p363-372.html
   My bibliography  Save this article

Semiparametric Likelihood Estimation in the Clayton–Oakes Failure Time Model

Author

Listed:
  • D. V. Glidden
  • S. G. Self

Abstract

Multivariate failure time data arise when the sample consists of clusters and each cluster contains several possibly dependent failure times. The Clayton–Oakes model (Clayton, 1978; Oakes, 1982) for multivariate failure times characterizes the intracluster dependence parametrically but allows arbitrary specification of the marginal distributions. In this paper, we discuss estimation in the Clayton–Oakes model when the marginal distributions are modeled to follow the Cox (1972) proportional hazards regression model. Parameter estimation is based on an approximate generalized maximum likelihood estimator. We illustrate the model's application with example datasets.

Suggested Citation

  • D. V. Glidden & S. G. Self, 1999. "Semiparametric Likelihood Estimation in the Clayton–Oakes Failure Time Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 363-372, September.
  • Handle: RePEc:bla:scjsta:v:26:y:1999:i:3:p:363-372
    DOI: 10.1111/1467-9469.00154
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00154
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqing He & Jerald F. Lawless, 2003. "Flexible Maximum Likelihood Methods for Bivariate Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 59(4), pages 837-848, December.
    2. Dandan Liu & John D. Kalbfleisch & Douglas E. Schaubel, 2011. "A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty," Biometrics, The International Biometric Society, vol. 67(1), pages 8-17, March.
    3. Shuling Liu & Amita K. Manatunga & Limin Peng & Michele Marcus, 2017. "A joint modeling approach for multivariate survival data with random length," Biometrics, The International Biometric Society, vol. 73(2), pages 666-677, June.
    4. Frank Eriksson & Torben Martinussen & Thomas H. Scheike, 2015. "Clustered Survival Data with Left-truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1149-1166, December.
    5. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-22, May.
    6. Li Hsu & Lu Chen & Malka Gorfine & Kathleen Malone, 2004. "Semiparametric Estimation of Marginal Hazard Function from Case–Control Family Studies," Biometrics, The International Biometric Society, vol. 60(4), pages 936-944, December.
    7. L. Xue & L. Wang & A. Qu, 2010. "Incorporating Correlation for Multivariate Failure Time Data When Cluster Size Is Large," Biometrics, The International Biometric Society, vol. 66(2), pages 393-404, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:26:y:1999:i:3:p:363-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.