IDEAS home Printed from
   My bibliography  Save this article

Nonparametric Estimation of Dynamic Hedonic Price Models and the Construction of Residential Housing Price Indices


  • Richard Meese
  • Nancy Wallace


Parametric specifications for hedonic price equations are estimated using a data set from Alameda and San Francisco Counties and are compared to estimates using a nonparametric technique called locally weighted regression, LWR. LWR permits flexible estimation of the hedonic's curvature at median attributes and is less sensitive than standard regression techniques to the influence of unusual observations. The technique also avoids imposing a single functional form across time and municipalities. The LWR estimates of municipality‐specific hedonics are then used to obtain implicit prices for housing attributes and to derive municipality‐specific price indices. The results of extensive diagnostic checks of our technique are also reported.

Suggested Citation

  • Richard Meese & Nancy Wallace, 1991. "Nonparametric Estimation of Dynamic Hedonic Price Models and the Construction of Residential Housing Price Indices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 19(3), pages 308-332, September.
  • Handle: RePEc:bla:reesec:v:19:y:1991:i:3:p:308-332
    DOI: 10.1111/1540-6229.00555

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reesec:v:19:y:1991:i:3:p:308-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.