IDEAS home Printed from
   My bibliography  Save this article

Semiparametric Estimator for Binary‐outcome Sample Selection: Prejudice Matters in Election


  • Jin‐Young Choi


a semiparametric estimator for binary‐outcome sample‐selection models is proposed that imposes only single index assumptions on the selection and outcome equations without specifying the error term distribution. I adopt the idea in Lewbel (2000) using a ‘special regressor’ to transform the binary response Y so that the transformed Y becomes linear in the latent index, which then makes it possible to remove the selection correction term by differencing the transformed Y equation. There are various versions of the estimator, which perform differently trading off bias and variance. A simulation study is conducted, and then I apply the estimators to US presidential election data in 2008 and 2012 to assess the impact of racial prejudice on the elections, as a black candidate was involved for the first time ever in the US history.

Suggested Citation

  • Jin‐Young Choi, 2018. "Semiparametric Estimator for Binary‐outcome Sample Selection: Prejudice Matters in Election," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 536-553, June.
  • Handle: RePEc:bla:obuest:v:80:y:2018:i:3:p:536-553

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:80:y:2018:i:3:p:536-553. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.