IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v5y1995i4p337-356.html
   My bibliography  Save this article

Optimal Portfolio Management With Fixed Transaction Costs

Author

Listed:
  • Andrew J. Morton
  • Stanley R. Pliska

Abstract

We study optimal portfolio management policies for an investor who must pay a transaction cost equal to a fixed Traction of his portfolio value each time he trades. We focus on the infinite horizon objective function of maximizing the asymptotic growth rate, so me optimal policies we derive approximate those of an investor with logarithmic utility at a distant horizon. When investment opportunities are modeled as "m" correlated geometric Brownian motion stocks and a riskless bond, we show that the optimal policy reduces to solving a single stopping time problem. When there is a single risky stock, we give a system of equations whose solution determines the optima! rule. We use numerical methods to solve for the optima! policy when there are two risky stocks. We study several specific examples and observe the general qualitative result that, even with very low transaction cost levels, the optimal policy entails very infrequent trading. Copyright 1995 Blackwell Publishers.

Suggested Citation

  • Andrew J. Morton & Stanley R. Pliska, 1995. "Optimal Portfolio Management With Fixed Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 337-356.
  • Handle: RePEc:bla:mathfi:v:5:y:1995:i:4:p:337-356
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9965.1995.tb00071.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:5:y:1995:i:4:p:337-356. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.