IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v29y2019i2p483-506.html
   My bibliography  Save this article

Optimal consumption and investment under transaction costs

Author

Listed:
  • David Hobson
  • Alex S. L. Tse
  • Yeqi Zhu

Abstract

In this paper, we consider the Merton problem in a market with a single risky asset and proportional transaction costs. We give a complete solution of the problem up to the solution of a first‐crossing problem for a first‐order differential equation. We find that the characteristics of the solution (e.g., well‐posedness) can be related to some simple properties of a univariate quadratic whose coefficients are functions of the parameters of the problem. Our solution to the problem via the value function includes expressions for the boundaries of the no‐transaction wedge. Using these expressions, we prove a precise condition for when leverage occurs. One new and unexpected result is that when the solution to the Merton problem (without transaction costs) involves a leveraged position, and when transaction costs are large, the location of the boundary at which sales of the risky asset occur is independent of the transaction cost on purchases.

Suggested Citation

  • David Hobson & Alex S. L. Tse & Yeqi Zhu, 2019. "Optimal consumption and investment under transaction costs," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 483-506, April.
  • Handle: RePEc:bla:mathfi:v:29:y:2019:i:2:p:483-506
    DOI: 10.1111/mafi.12187
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12187
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Hobson & Alex S. L. Tse & Yeqi Zhu, 2019. "A multi-asset investment and consumption problem with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 641-676, July.
    2. Jia Yue & Ming-Hui Wang & Nan-Jing Huang, 2022. "Global Optimal Consumption–Portfolio Rules with Myopic Preferences and Loss Aversion," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1427-1455, December.
    3. Alex S. L. Tse, 2020. "Dividend policy and capital structure of a defaultable firm," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 961-994, July.
    4. Jintao Li & Shuaijie Qian, 2024. "Comparative Statics of Trading Boundary in Finite Horizon Portfolio Selection with Proportional Transaction Costs," Papers 2412.13669, arXiv.org.
    5. Alex S. L. Tse & Harry Zheng, 2023. "Speculative trading, prospect theory and transaction costs," Finance and Stochastics, Springer, vol. 27(1), pages 49-96, January.
    6. Alex S. L. Tse & Harry Zheng, 2019. "Speculative Trading, Prospect Theory and Transaction Costs," Papers 1911.10106, arXiv.org, revised Oct 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:29:y:2019:i:2:p:483-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.