Author
Listed:
- Shuping Shi
- Jun Yu
- Chen Zhang
Abstract
The fractional Brownian motion (fBm) process, governed by a fractional parameter H∈(0,1)$$ H\in \left(0,1\right) $$, is a continuous‐time Gaussian process with its increment being the fractional Gaussian noise (fGn). This article first provides a computationally feasible expression for the spectral density of fGn. This expression enables us to assess the accuracy of a range of approximation methods, including the truncation method, Paxson's approximation, and the Taylor series expansion at the near‐zero frequency. Next, we conduct an extensive Monte Carlo study comparing the finite sample performance and computational cost of alternative estimation methods for H$$ H $$ under the fGn specification. These methods include two semi‐parametric methods (based on the Taylor series expansion), two versions of the Whittle method (utilising either the computationally feasible expression or Paxson's approximation of the spectral density), a time‐domain maximum likelihood (ML) method (employing a recursive approach for its likelihood calculation), and a change‐of‐frequency method. Special attention is paid to highly anti‐persistent processes with H$$ H $$ close to zero, which are of empirical relevance to financial volatility modelling. Considering the trade‐off between statistical and computational efficiency, we recommend using either the Whittle ML method based on Paxson's approximation or the time‐domain ML method. We model the log realized volatility dynamics of 40 financial assets in the US market from 2012 to 2019 with fBm. Although all estimation methods suggest rough volatility, the implied degree of roughness varies substantially with the estimation methods, highlighting the importance of understanding the finite sample performance of various estimation methods.
Suggested Citation
Shuping Shi & Jun Yu & Chen Zhang, 2025.
"Fractional Gaussian Noise: Spectral Density and Estimation Methods,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 46(6), pages 1146-1174, November.
Handle:
RePEc:bla:jtsera:v:46:y:2025:i:6:p:1146-1174
DOI: 10.1111/jtsa.12750
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:46:y:2025:i:6:p:1146-1174. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.