IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v46y2025i1p137-151.html
   My bibliography  Save this article

General estimation results for tdVARMA array models

Author

Listed:
  • Abdelkamel Alj
  • Rajae Azrak
  • Guy Mélard

Abstract

The article will focus on vector autoregressive‐moving average (VARMA) models with time‐dependent coefficients (td) to represent general nonstationary time series, not necessarily Gaussian. The coefficients depend on time, possibly on the length of the series n, hence the name tdVARMA (n) for the models, but not necessarily on the rescaled time t/n. As a consequence of the dependency on n of the model, we need to consider array processes instead of stochastic processes. Under appropriate assumptions, it is shown that a Gaussian quasi‐maximum likelihood estimator is consistent in probability and asymptotically normal. The theoretical results are illustrated using three examples of bivariate processes, the first two with marginal heteroscedasticity. The first example is a tdVAR (n)(1) process while the second example is a tdVMA (n)(1) process. In these two cases, the finite‐sample behavior is checked via a Monte Carlo simulation study. The results are compatible with the asymptotic properties even for small n. A third example shows the application of the tdVARMA (n) models for a real time series.

Suggested Citation

  • Abdelkamel Alj & Rajae Azrak & Guy Mélard, 2025. "General estimation results for tdVARMA array models," Journal of Time Series Analysis, Wiley Blackwell, vol. 46(1), pages 137-151, January.
  • Handle: RePEc:bla:jtsera:v:46:y:2025:i:1:p:137-151
    DOI: 10.1111/jtsa.12761
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12761
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:46:y:2025:i:1:p:137-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.