IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v24y2003i6p705-720.html
   My bibliography  Save this article

Distribution of the estimated lyapunov exponents from noisy chaotic time series

Author

Listed:
  • Dejian Lai
  • Guanrong Chen

Abstract

In this paper, we give statistical analyses and simulation studies on the Lyapunov exponents estimated from noisy chaotic time series. Through the Jacobian estimation approach, the asymptotic distribution of the estimated Lyapunov exponents are studied and characterized from the observed noisy chaotic time series. Theoretical results are visualized and verified by numerical simulations. Copyright 2003 Blackwell Publishing Ltd.

Suggested Citation

  • Dejian Lai & Guanrong Chen, 2003. "Distribution of the estimated lyapunov exponents from noisy chaotic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(6), pages 705-720, November.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:6:p:705-720
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=jtsa&volume=24&issue=6&year=2003&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    3. Osborn, Denise R., 1993. "Seasonal cointegration," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 299-303.
    4. Castro, Tomas del Barrio & Osborn, Denise R., 2008. "Testing For Seasonal Unit Roots In Periodic Integrated Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 24(04), pages 1093-1129, August.
    5. Hylleberg, Svend & Jorgensen, Clara & Sorensen, Nils Karl, 1993. "Seasonality in Macroeconomic Time Series," Empirical Economics, Springer, vol. 18(2), pages 321-335.
    6. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, December.
    7. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(04), pages 645-670, August.
    8. repec:bla:restud:v:57:y:1990:i:1:p:99-125 is not listed on IDEAS
    9. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
    10. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(02), pages 527-560, April.
    11. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    12. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    13. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    14. Taylor, A.M. Robert, 2003. "On The Asymptotic Properties Of Some Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(02), pages 311-321, April.
    15. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    16. Hansen, Bruce E., 1992. "Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 87-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evzen Kocenda & Lubos Briatka, 2005. "Optimal Range for the iid Test Based on Integration Across the Correlation Integral," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 265-296.
    2. Evzen Kocenda & Lubos Briatka, 2004. "Advancing the iid Test Based on Integration across the Correlation Integral: Ranges, Competition, and Power," CERGE-EI Working Papers wp235, The Center for Economic Research and Graduate Education - Economics Institute, Prague.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:6:p:705-720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.